Infrared and Electronic Spectra of Matrix-isolated Dichlorodioxo- and Dibromodioxo-molybdenum(vi) and -tungsten(vi)

William Levason,* Ramaier Narayanaswamy, J. Steven Ogden, Antony J. Rest, and Jeremy W. Turff

Department of Chemistry, The University, Southampton SO9 5NH

The prominent i.r. and u.v.-visible bands of the title compounds isolated as monomers in low-temperature matrices have been obtained and assigned. For MoO_2Cl_2 and MoO_2Br_2 , the vibrational isotope effect on the antisymmetric stretching mode v(Mo=0) leads to estimates of bond angles OMoO of $109 \pm 3^\circ$, whilst for WO_2Cl_2 and WO_2Br_2 , relative band intensities predict $OWO = 107 \pm 2^\circ$ for both molecules. In the quantitative assignment of the electronic spectra, it is suggested that the positions of the charge transfer bands require somewhat lower values of χ_{opt} . than are appropriate for octahedral complexes.

There are six known dioxide dihalides of molybdenum and tungsten. These are MoO₂F₂, MoO₂Cl₂, MoO₂Br₂, WO₂Cl₂, WO₂Br₂, and WO₂I₂, and in addition, there is mass spectrometric evidence for WO₂F₂.² A combination of X-ray diffraction and vibrational spectroscopy has established that the solid-phase structures of the chloro- and bromo-compounds involve distorted octahedral co-ordination of the transition metal, with oxygen bridging,3-7 whilst i.r. data on solid MoO₂F₂ suggest both oxygen and fluorine bridging.4 The structure WO₂I₂ is uncertain. In the vapour phase, a variety of mass spectrometric, i.r., and Raman studies have been interpreted in terms of monomeric (C_{2v}) species, but apart from one electron diffraction report on MoO₂Cl₂,8 no structural data are available. Similarly, very little is known of their molecular electronic absorption spectra, although the chromium analogues, CrO₂F₂ and CrO₂Cl₂, have been extensively studied.9-11 A gas-phase He-I photoelectron spectrum has, however, been reported for MoO₂Cl₂.12

At the present time, there is considerable interest in these compounds in view of their importance in high-temperature vapour transport (for example, in incandescent lamps 13) and we are currently studying a number of such systems in detail in order to characterise these species more completely. In our earlier paper ¹⁴ on MOX_4 monomers (M = Mo or W; X = F, Cl, or Br) we reported high resolution i.r. and electronic spectral data obtained from matrix studies, and demonstrated that this experimental technique offered a significant advanrage over conventional vapour-phase methods in terms of spectral resolution. This present paper describes a similar series of experiments on monomeric MO_2X_2 species (M = Mo or W, X = Cl or Br), and in addition to reporting their electronic spectra for the first time, we also demonstrate how the use of isotope fine structure and relative band intensities in the i.r. can lead to estimates of interbond angles.

Experimental

Preparation of Compounds.—Dichlorodioxomolybdenum-(vi) was prepared by the reaction between MoO₃ and MoCl₅ in a sealed tube, following the method of Glukhov and Eliseev,¹⁵ whilst MoO₂Br₂ was obtained from the reaction between MoO₃ and BBr₃ in a similar manner to that described earlier for WOBr₄.¹⁴ The tungsten analogues, WO₂Cl₂ and WO₂Br₂, were prepared in two ways. The first of these was based on the reaction between WO₃ and the appropriate carbon tetrahalide in a flow system as described by Castro Luna and Rivarola.¹⁶ Although the principal product of this reaction was the desired WO₂X₂ species, some contamination by the corresponding WOX₄ species was generally present, and this required careful separation by vacuum sublimation. A second, novel, synthesis was therefore sought based on the reaction between WO₃ and molten alkali-metal halides. This route to oxohalide species was chosen in view of its success in the preparation of related oxohalide anions, ^{17,18} and in our systems, the use of LiBr/KBr and LiCl/KCl melts allowed us to carry out the reactions in Pyrex.

In a typical synthesis, a sample of WO₃ (ca. 0.5 g) was mixed with an excess of a finely ground, dried, eutectic mixture of either LiBr/KBr (mol ratio 3:2, m.p. 340 °C) or LiCl/KCl (mol ratio, 3:2, m.p. 360 °C) and gently warmed in vacuo. The mixture was then heated to ca. 380—400 °C for 2 h under dynamic vacuum during which time the desired product (yellow WO₂Cl₂ or brown WO₂Br₂) sublimed onto the cooler parts of the apparatus. Subsequent elemental analysis indicated that WOX₄ species were not produced in these reactions. Further experiments showed that MoO₂Br₂ could also be satisfactorily produced by this route.

Samples of WO₃ and MoO₃ were freshly prepared as described previously.¹⁴ MoCl₅ was obtained from Aldrich Chemical Co. Ltd., and other standard reagents [CCl₄, CBr₄, LiBr, KBr, KCl, LiCl·2H₂O] were obtained from BDH.

All the compounds were resublimed *in vacuo* immediately before use and had satisfactory halogen analyses (calculated values in parentheses): MoO₂Cl₂ [Cl, 35.45 (35.65)], MoO₂Br₂ [Br, 55.45 (55.55)], WO₂Cl₂ [Cl, 24.35 (24.75)], and WO₂Br₂ [Br, 41.45 (42.55)%].

Matrix-isolation Spectroscopy.—Samples were vaporised from Pyrex break-seal ampoules and co-condensed with the appropriate matrix gas (argon or nitrogen; B.O.C.) onto cooled (ca. 12 K) spectroscopic windows as described previously. For i.r. studies the spray-on temperatures of the samples (MoO₂Cl₂, 25 °C; MoO₂Br₂, 200 °C; WO₂Cl₂, 300 °C; WO₂Br₂, 300 °C) were higher than those required for u.v.-visible studies (20, 120, 250, and 250 °C respectively) because of the lower absorption coefficients of the i.r. bands. In both types of experiment, estimated matrix ratios were well in excess of 1 000: 1. The spectrometers and matrix equipment used were as described previously. If

Results and Discussion

Infrared Studies.—Previous vibrational studies on vapourphase MO_2X_2 systems (M = Mo or W, X = Cl or Br) have been interpreted on the basis of tetrahedral $C_{2\nu}$ monomers, $^{19-23}$ and mass spectrometric studies have similarly demonstrated the predominance of monomers. As in our earlier paper on MOX_4 systems, therefore, the main reasons for carrying out matrix-isolation i.r. studies were firstly to establish beyond

Table 1. (a) Vibrational fundamentals (cm⁻¹) for monomeric MO₂X₂ species

					J	MoO ₂	Cl ₂					MoC	D ₂ Br ₂				WC	₂ Cl ₂		V	VO ₂ B ₁	ſ ₂
Mode	e	Ref.	19	7	20	21	4	22	a	19	7	20	21	22	a	7	20	23	a	20	23	a
A_1	ν(M=O)			996	994		996	996	996	995	993	991		995	991	984	992		1 014	985	1	1 009
B_1	ν(M=O)		972	972	972		966	970	968	969	967	969	970	970	963	972	978		974	973		969
A_1	v(M-X)			437	437		432	429	434				260	262	262						259	258
B_2	v(M-X)		450	453	450	450	470	470	451				340	338	351			431	425		305	309
A_1	$\delta(MO_2)$					340	339	338	340					378	378			340			357	363
A_1	$\delta(MX_2)$						113	167						147								
B_1	$\rho(MO_2)$						211 ca	a. 202						184								
$\bar{B_2}$	$\rho(MX_2)$					280	267	180						161								
A_2	τ						194	116						82								
	(b) Isoto	pe fin	e strı	ıcture	b. for	v(Mo	=O) (B ₁) in M	0 O ₂C	l ₂ and	MoO	2Br2										
					92 M	o	94 Mc)	95M	0	96 N	l o	97	Mo	9	8Mo		¹⁰⁰ Mc)			
		M	0 O ₂C	12	972.	1	970.2	2	969.	2	968	3.2	96	57.4	9	66.5		964.7				
		M	oO ₂ B	r ₂	966.	9	964.9	•	964.	0	963	3.0	96	52.2	9	61.3		959.4				

^a This work, nitrogen matrices. ^b Nitrogen matrices; frequency accuracy ± 0.2 cm⁻¹.

doubt the principal i.r. bands of the monomers, to use these data to estimate bond angles, and finally, to select suitable conditions for obtaining u.v.-visible spectra.

The molecular vibrations for a tetrahedral C_{2v} species MO_2X_2 may be shown to be $\Gamma_{v1b} = 4A_1 + A_2 + 2B_1 + 2B_2$, with $\Gamma_{M=O(str.)} = A_1 + B_1$, and $\Gamma_{M-X(str.)} = A_1 + B_2$. Several authors have made partial assignments for the four species considered here, and Table 1 summarises the relevant data. In particular, it is evident that MoO_2Cl_2 has attracted most interest, but even here there is some disagreement over the location of the bending fundamentals. The other three molecules, MoO_2Br_2 , WO_2Cl_2 , and WO_2Br_2 , have received much less attention, and the only basis here for a comparable assignment comes from the Raman study on MoO_2Br_2 by Kovba and Maltsev.²²

Our matrix-isolation experiments on MoO₂Cl₂, MoO₂Br₂, and WO₂Br₂ gave spectra entirely consistent with the isolation of monomeric species. The frequencies observed in nitrogen and argon matrices rarely differed by more than 2 cm⁻¹, and our nitrogen values are included in Table 1. In the case of WO₂Cl₂, however, we routinely observed two additional features at 1 032 and 380 cm⁻¹ (nitrogen matrices) which could be assigned ¹⁴ to matrix-isolated WOCl₄. These bands were found in all spectra, irrespective of sample history, and we believe they arise from vapour-phase disproportionation of WO₂Cl₂ to give WOCl₄ and an (involatile) oxide of tungsten. The presence of WOCl₄ as a persistent impurity in vapour-phase studies on WO₂Cl₂ has also been noted by other workers, ^{4,7,23} and the disproportionation model is supported by tensimetric studies. ^{25,26}

Estimation of Bond Angles.—Figure 1(a) shows the high-resolution argon matrix spectrum of MoO_2Cl_2 in the M=O stretching region. Figure 1(c) shows the isotope abundances for naturally occurring molybdenum, and Figure 1(b) shows the antisymmetric (B_1) Mo=O stretch observed for MoO_2Br_2 in a nitrogen matrix. The fine structure on these bands is clearly due to molybdenum isotopes, and it is also evident that the components of the B_1 modes are moderately well resolved. If one considers this mode to be effectively uncoupled from the B_1 bending mode (assigned at <250 cm⁻¹ for both MoO_2Cl_2 and MoO_2Br_2) the appropriate secular equation may be shown to be equation (1), where M_0 and

$$\lambda_{B_1}(M=O) = (F_r - F_{rr})(1/M_O + 2\sin^2\theta/M_{Mo})$$
 (1)

 M_{Mo} refer to the masses of oxygen and molybdenum, F_r and

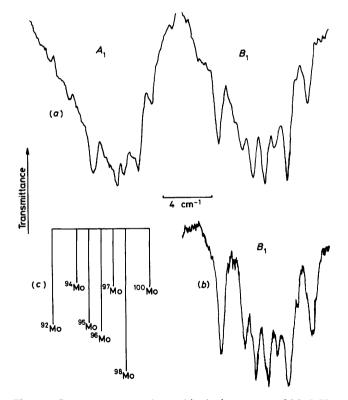


Figure 1. Isotope structure observed in the i.r. spectra of MoO_2X_2 molecules isolated in inert gas matrices at ca. 12 K: (a) $v_{A_1}(Mo=O)$ in MoO_2Cl_2 (Ar matrix 1 000—986 cm⁻¹) and $v_{B_1}(Mo=O)$ in MoO_2 -Cl₂ (Ar matrix 974—960 cm⁻¹); (b) $v_{B_1}(Mo=O)$ in MoO_2Br_2 (N_2 matrix 970—958 cm⁻¹); and (c) bar-graph showing relative abundances of molybdenum isotopes

 F_{rr} are the principal and interaction molybdenum-oxygen stretching force constants, and 2θ is the angle OMoO. If frequency data from two or more isotopic molybdenum species are available, this equation may in principle be used to estimate the interbond angle 2θ using the relationship (2),

$$\sin^2\theta = Mo'Mo''[(\omega')^2 - (\omega'')^2]/32[Mo''(\omega'')^2 - Mo'(\omega')^2]$$
 (2)

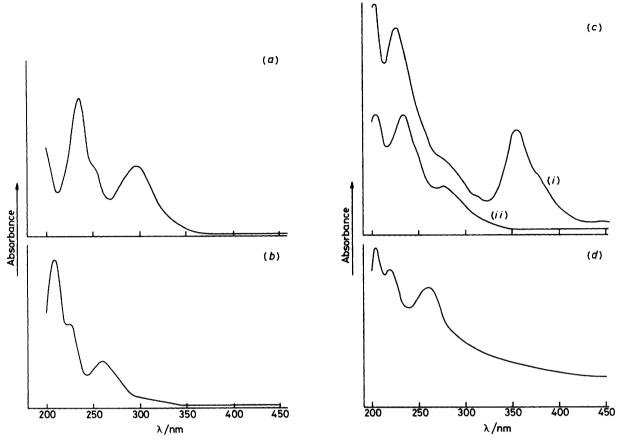


Figure 2. Electronic absorption spectra for MO₂X₂ species isolated in N₂ matrices at ca. 12 K: (a) MoO₂Br₂; (b) MoO₂Cl₂; (c) WO₂Cl₂, (i) containing WOCl₄, (ii) WOCl₄ subtracted; and (d) WO₂Br₂

where ω' and ω'' are the zero-order frequencies corresponding to molybdenum isotope masses Mo' and Mo''. This expression assumes simple harmonic motion, but it has been shown that for CrO_2Cl_2 and CrO_2F_2 , 28 the use of observed vibrational transitions ν (uncorrected for anharmonicity) leads to estimates of OCrO angles from chromium isotope shifts which are in satisfactory agreement with other data. This approach has also been widely used to estimate bond angles in triatomic species. 29

Application of this equation to the antisymmetric Mo=O stretching modes in MoO₂Cl₂ and MoO₂Br₂ leads to bond angles OMoO of $109 \pm 3^{\circ}$ for both species on the basis of the isotope data given in Table 1. The uncertainty quoted here essentially arises from the precision to which the 92 Mo- 100 Mo shift could be measured (± 0.2 cm⁻¹), but bearing in mind the approximations involved in the use of (1) and (2), it would be realistic to increase these error limits by a factor of two. Nevertheless, it is encouraging that our value for MoO₂Cl₂ is similar to the published electron diffraction value which gives OMoO = $104 \pm 2^{\circ}$ for the gas-phase monomer.⁸

In the case of the tungsten analogues, we were unable to resolve a convincing W=O isotope pattern (the estimated peak separation is ca. 0.3 cm⁻¹ per unit mass change of tungsten) but the intensity ratio of the W=O stretching modes provides an alternative route to the OWO angle (20). If these $(A_1 + B_1)$ modes are separated from the remaining vibrational fundamentals, and the validity of the bond dipole model for i.r. intensities is assumed, it may readily be shown ³⁰ that I_{B_1}/I_{A_1} = $\tan^2\theta(G_{B_1}/G_{A_1})$, where G_{B_1} and G_{A_1} are the appropriate G-matrix elements in the Wilson G-F approach. For the WO₂

unit in WO₂Cl₂ and WO₂Br₂, this equation reduces to (3),

$$I_{B_1}/I_{A_1} = \tan^2\theta (M_W + 32\sin^2\theta)/(M_W + 32\cos^2\theta)$$
 (3)

where $M_{\rm w}$ is the atomic weight of tungsten.

Our estimates of the integrated i.r. absorptions of the W-O stretching modes give values for I_{B_1}/I_{A_1} of 1.91 ± 0.1 for both WO₂Cl₂ and WO₂Br₂, which imply bond angles of $107\pm2^{\circ}$ in both species. This approach has recently been applied to molecular K₂WO₄, which similarly shows two i.r. active W=O stretching modes in low-temperature matrices,³¹ and the agreement with related electron diffraction data was satisfactory. It is difficult to assess the absolute accuracy of angles obtained using this approach, but the values obtained here for WO₂Cl₂ and WO₂Br₂ are very similar to those found for MoO₂Cl₂ and MoO₂Br₂ from isotope frequency shifts, and it might be anticipated that these four molecules would have comparable OMO bond angles in view of the close similarity between Mo^{VI} and W^{VI} compounds.

U.v.-Visible Studies.—Matrix isolation experiments to obtain the electronic spectra of these MO₂X₂ species generally employed nitrogen as the matrix gas, and somewhat lower vaporisation temperatures compared with the corresponding i.r. studies (see Experimental section). Typical results are shown in Figure 2. For MoO₂Cl₂, MoO₂Br₂, and WO₂Br₂, we are confident that these spectra are due to the monomeric species in view of our earlier i.r. results. However, with WO₂-Cl₂, our spectra [see, for example, Figure 2(c)] show clear evidence of the additional presence of monomeric WOCl₄.

Table 2. Observed and calculated charge-transfer bands (cm⁻¹) for matrix-isolated MO₂X₂ species

Compound	Observed band a	Calc. I b	Calc. II c	Assignment
MoO ₂ Cl ₂	44 440	45 000	45 000	c.t. O→Mo
	38 610	27 000	39 000	c.t. Cl→Mo
	32 680			
MoO ₂ Br ₂	42 550	45 000	45 000	c.t. O→Mo
	39 680	21 000	33 000	c.t. $Br \rightarrow Mo$
	33 780			
WO ₂ Cl ₂	48 540	48 000	48 000	c.t. $O \rightarrow W$
	42 730	30 000	42 000	c.t. Cl→W
	35 970			
WO_2Br_2	48 080	48 000	48 000	c.t. $O \rightarrow W$
	38 610	24 000	36 000	c.t. $Br \rightarrow W$

^a Wavenumber positions obtained from spectra measured in wavelength. ^b Using χ_{opt.} values of 3.0 (Cl), 2.8 (Br), 3.6 (O), 2.1 (Mo), and 2.0 (W). ^c Using χ_{opt.} values of 3.0 (Cl), 2.8 (Br), 3.2 (O), 1.7 (Mo), and 1.6 (W).

The electronic spectrum of this molecule has previously been reported, ¹⁴ and its presence here was not entirely unexpected in view of the i.r. evidence. As a result, however, it was necessary to obtain the spectrum of WO₂Cl₂ by subtraction. Band maxima positions for all four MO₂X₂ species are given in Table 2.

Unlike CrO₂Cl₂, for which well resolved luminescence spectra have been obtained,³² no emission was detected on exciting any of these MO₂X₂ species in any of their electronic absorption bands.

Interpretation. In principle, the assignment of electronic spectra can be attempted in several ways, and for this type of compound, the most popular methods involve either SCF- $X\alpha$ -SW MO calculations, ¹⁰ the concept of optical electronegativity ³³ [which gives the position of the lowest energy charge-transfer (c.t.) bands], or photoelectron spectroscopy. The observation of vibrational progressions serves to confirm band assignments, but unlike our previous study on MOX₄ systems, ¹⁴ such fine structure was not observed here.

A comparison between the He-I photoelectron spectra of CrO₂Cl₂ and MoO₂Cl₂ ¹² reveals very similar energies for the six principal bands (A—F) * and this may be taken to indicate that the ordering of the occupied levels is the same for both molecules. We therefore assign the electronic transitions for MoO₂Cl₂ by analogy with CrO₂Cl₂, ¹⁰ and similar assignments for the remaining MO₂X₂ compounds would seem reasonable (Table 2).

Predictions of the lowest energy charge-transfer bands using optical electronegativities are generally satisfactory for [MX₆]ⁿ⁻ ions,³³ and have given reasonable agreement with experiment for the five-co-ordinate species MOX4 reported earlier.¹⁴ For the above compounds, values of $\chi_{opt.}$ are taken to be Mo 2.1, W 2.0, O 3.6, Cl 3.0, and Br 2.8, and if these parameters are used directly to predict the positions of the c.t. bands in our MO₂X₂ species, the agreement for halogenmetal c.t. is poor (Table 2, Calc. I). However, Jorgensen 33 has argued that the strong π antibonding effect of oxide ligands in tetrahedrally co-ordinated complexes results in a lowering of the $\chi_{opt.}$ values for both metal and oxide. A second estimate of the positions of these bands may therefore be made taking $\chi_{\rm opt.}({\rm O}^{2-})$ as 3.2 (ref. 33) and using data from $[{\rm MoO_4}]^{2-}$ and $[WO_4]^{2-}$ to estimate χ values for Mo and W. These estimates (Table 2, Calc. II) give better overall agreement with our spectral data but still leave room for improvement. In particular, the prediction that the lowest energy $X \rightarrow M$ c.t. band in the bromides should lie below that in the chlorides is not borne out in practice, and the possibility remains that the long tails on the high-wavelength side of these bands contain unresolved c.t. maxima. Only a limited number of tetrahedral oxide halide molecules have been studied in this way, and a discussion of the assumptions involved in using $\chi_{\text{opt.}}$ data derived from $[MO_4]^{n-}$ species must be reserved until data are available on a wider range of compounds.

Acknowledgements

We thank the S.E.R.C. for general support (to A. J. R. and J. S. O.), and G.E.C. for a C.A.S.E. Studentship (to J. W. T.).

References

- 1 J. H. Canterford and R. Colton, 'Halides of the Second and Third Row Transition Metals,' Wiley, London, 1968.
- 2 M. J. Atherton and J. H. Holloway, J. Chem. Soc., Chem. Commun., 1978, 254.
- 3 O. Jarchow, F. Schröder, and H. Schulz, Z. Anorg. Allg. Chem., 1968, 363, 58.
- 4 I. R. Beattie, K. M. S. Livingstone, D. J. Reynolds, and G. A. Ozin, J. Chem. Soc. A, 1970, 1210.
- 5 R. Mattes and F. Schröder, Z. Naturforsch., Teil. B, 1969, 24, 1095.
- 6 D. M. Adams and R. G. Churchill, J. Chem. Soc. A, 1968, 2310.
 7 C. G. Barraclough and J. Stals, Aust. J. Chem., 1966, 19, 741.
- 8 I. M. Zharskii, E. Z. Zasorin, V. P. Spiridonov, G. I. Novikov, and V. N. Kupreev, Koord. Khim., 1975, 1, 574.
- M. Spoliti, J. H. Thirtle, and T. M. Dunn, J. Mol. Spectrosc., 1974, 52, 146.
- 10 J. P. Jasinski, S. L. Holt, J. H. Wood, and L. B. Asprey, J. Chem. Phys., 1975, 63, 757.
- 11 T. M. Dunn and A. H. Francis, J. Mol. Spectrosc., 1968, 25, 86.
- 12 P. Burroughs, S. Evans, A. Hamnett, A. F. Orchard, and N. V. Richardson, J. Chem. Soc., Faraday Trans. 2, 1974, 1895.
- 13 See, for example, P. Eckerlin and S. Garbe, *Philips J. Res.*, 1980,
- 14 W. Levason, R. Narayanaswamy, J. S. Ogden, A. J. Rest, and J. W. Turff, J. Chem. Soc., Dalton Trans., 1981, 2501.
- 15 I. A. Glukhov and S. S. Eliseev, Dokl. Akad. Nauk Tadzh. SSR, 1964, 7, 25.
- 16 E. A. Castro Luna and J. B. P. Rivarola, Rev. Latinoam. Ing. Quim. Quim. Apl., 1971, 77 (Chem. Abs., 76, 118133).
- 17 O. Schmitz-Dumont, I. Bruns, and I. Heckmann, Z. Anorg. Allg. Chem., 1953, 271, 347.
- 18 A. N. Zelikman and N. N. Gorovits, Zh. Obshch. Khim., 1954, 24, 1916.
- 19 T. V. Iorns and F. E. Stafford, J. Am. Chem. Soc., 1966, 88, 4819. 20 B. G. Ward and F. E. Stafford, Inorg. Chem., 1968, 7, 2569.
- V. I. Yampolskii, thesis, Moscow University, 1973 (quoted in ref. 22).

^{*} Principal bands for CrO_2Cl_2 : A = 11.85, 11.97 (sh); B = 12.78; C = 13.24; D = 13.84; E = 14.3; F = 14.8 eV. MoO_2Cl_2 : A = 11.93 (sh), 12.13, 12.21 (sh); B = 12.6, 12.67 (sh); C = 13.0; D = 13.76; E = 14.47; F = 14.93 eV (1 eV $\approx 1.602 \times 10^{-19}$ J).

- 22 V. M. Kovba and A. A. Maltsev, Russ. J. Inorg. Chem., 1975, 20, 11.
- 23 V. M. Kovba, V. A. Leonov, and A. A. Maltsev, Russ. J. Inorg. Chem., 1976, 21, 308.
- 24 O. Kaposi, T. Deutsch, A. Popovic, and J. Pezdic, Acta Chim. Acad. Sci. Hung., 1976, 89, 101; S. K. Gupta, J. Phys. Chem., 1969, 73, 4086; ibid., 1971, 75, 112; D. L. Singleton and F. E. Stafford, Inorg. Chem., 1972, 11, 1208.
- 25 H. Oppermann, Z. Anorg. Allg. Chem., 1971, 383, 1.
- 26 S. A. Shchukarev, G. I. Novikov, A. V. Suvorov, and A. K. Baev, Zh. Neorg. Khim., 1958, 3, 2630.
- 27 J. S. Ogden, unpublished work.

- 28 I. R. Beattie, C. J. Marsden, and J. S. Ogden, J. Chem. Soc., Dalton Trans., 1980, 535.
- 29 See, for example, J. S. Ogden, in 'Cryochemistry,' Wiley-Interscience, New York, 1976.
- 30 See for example, E. B. Wilson, J. C. Decius, and P. C. Cross, 'Molecular Vibrations,' McGraw-Hill, 1955.
- 31 I. R. Beattie, J. S. Ogden, and D. D. Price, J. Chem. Soc., Dalton Trans., 1982, 505.
- 32 V. E. Bondybey, Chem. Phys., 1976, 18, 293.
- 33 C. K. Jorgensen, Prog. Inorg. Chem., 1970, 12, 101.

Received 5th March 1982; Paper 2/389